Fusión nuclear.
La fusión nuclear se produce debido a la unión de dos o mas núcleos de átomos ligeros en un solo núcleo de mas a mas elevada. Siempre que dos núcleos ligeros se unen para formar otro mas pesado, la masa de este es menos a la suma de los primeros. La diferencia de masa, es decir, la parte de materia faltante se ha convertido en energía.
Por ejemplo: cuando se une un átomo de deuterio, isótopo del hidrógeno que tiene un protón y un neutrón en el núcleo, con un átomo de tritio, otro isótopo de hidrógeno conteniendo un protón y dos neutrones en el núcleo, se produce un átomo de helio mas la emisión de un neutrón y liberación de energía equivalente a la masa perdida al producirse la reacción. La fusión nuclear entre el deuterio 1H² y el tritio 2H³ se presenta la siguiente manera: 1H² + 2H³ Δ→ 2H⁴ + n´ + energía.
En virtud de que el hidrógeno y sus isótopos (el deuterio y el tritio) constituyen la mayor parte del agua, podemos decir que los océanos son inagotables fuentes de energía. No obstante, la fusión de los núcleos átomos no se lleva a cabo con facilidad, pues por ser los núcleos de carga eléctrica positiva hay una natural fuerza de repulsión entre ellos.
Para vencer esta fuerza se requieren altas temperaturas, de tal manera que una gran energía ayude a los núcleos a entrar en un contacto y se produzca la fusión. Las reacciones de fusión son las que mas energía pueden desprender, se producen en el sol y las estrellas en donde la energía necesaria para la fusión se obtiene como resultado de la agitación térmica provocada por las temperaturas de millones de grados a las cuales se encuentra sometida la materia.
En los últimos 30 años se han invertido miles de millones de dólares tan solo en los Estados Unidos de América en las investigaciones que se realizan para tratar de dominar la fusión que debe realizarse a temperaturas de millones de grados, pues no existe aun ningún material apropiado para construir un recipiente que no se funda. Por esta razón los científicos tratan de producir la fusión en maquinas construidas con magnetos súper conductores que permitan confinar el combustible usado en el centro de recipientes, de tal manera que no puedan alcanzar las paredes de los mismos y fundirlas.
Fusión en frio, ¿mito o realidad?
A principios de 1989, el mundo científico se estremeció ante el anuncio hecho por la Universidad de Utah, en los Estados Unidos, de que había logrado la fusion nuclear en frio, es decir, a la temperatura ambiente.
El experimento que realizaron requirió de cuatro pequeñas botellas de plástico, cada una de ellas contenía electrodos de platino y de paladio sumergidos en agua pesada (agua en la cual el hidrogeno esta sustituido por su isótopo deuterio).
Los científicos de Utah reportaron que la fusión nuclear se presento en el electrodo de paladio, al pasar electricidad a través de la celda electrónica. Así pues, los descubridores de la fusión en frio asegurando haber alcanzado este objetivo tan perseguido con un simple aparato de laboratorio y sobre todo trabajando a temperatura ambiente.
Después del anuncio hecho de la fusión en frio, cientos de laboratorios de todo el mundo tratan de reproducir el experimento para comprobar o refutar los reportes de la universidad de Utah. En caso de que dicho experimento fuera una realidad, entraríamos a un mundo completamente nuevo, porque se tendría una fuente inagotable de energía a muy bajo costo, lo cual revolucionaria la industria, los viajes espaciales, las estrategias de armas, los proyectos de defensa militar y el rompimiento de las diferencias entre los países que tienen energéticos y los que carecen de ellos.
Sin embargo, aun hay serias dudas de la existencia de la fusión en frio, pues los pocos neutrones generadores al reproducir el experimento provocan que los detectores sean fácilmente engañados por la radiación parasita de los rayos cósmicos o de cualquier otra radiación presente. Inclusive, Peter L. Hagelstein, investigador del Instituto Tecnológico de Massachusetts, en su reporte sobre la fusión en frio postuló: la energía proveniente de la fusión del núcleo del deuterio no se convierte en radiación o en partículas subatómicas, sino que de marca directa entra en la estructura cristalina del electrodo de paladio, eventualmente manifestándose como calor.
¿Es un mito o una realidad la fusión en frio?
La respuesta la sabremos con el tiempo, después de que los científicos determinen si es una maravillosa realidad o sólo se trato de una simple ilusión.
Fisión nuclear.
La fisión nuclear se produce cuando un núcleo de un átomo pesado es bombardeado por una partícula incidente, especialmente por un neutrón, provocando su ruptura en dos fragmentos y muy rara vez en tres.
Como se sabe, los núcleos atómicos están constituidos por protones y neutrones que se mantienen unidos a través de fuerzas de intercambio en dichos nucleones.
Estas fuerzas apenas son suficientes para mantener la cohesión del núcleo cuando este es muy pesado debido a su gran cantidad de neutrones. Es por ellos que si un neutrón se impacta en un núcleo pesado este se deforma y se alarga hasta romperse generalmente en dos fragmentos, pues muy rara vez se rompe en tres, cada fragmento constituye el núcleo de un elemento mas ligero.
Durante la desintegración se produce la emisión de varios neutrones libres que se encuentran en exceso en los núcleos nuevamente formados, y la liberación de energía por medio de radiaciones; estas, al irradiar la materia cercana, engendran calor aprovechable y equivalente a la energía que mantenía unido al nucleó pesado, así como a la perdida de masa original transformada en energía. Dicho fenómeno puede compararse con una gota de agua muy grande a la cual al agregarle mas agua se parte en dos o mas gotas pequeñas e independientes que adoptan la misma forma esférica de la gota original.
Los elementos mas usados para producir fisión nuclear son: uranio 235, cuenta con 92 protones y 143 neutrones y plutonio 239, con 94 protones y 145 neutrones.
Durante la fisión del uranio no siempre se producirá bario y criptón, sino que los pares producidos pueden ser bromo y lantano, estroncio y xenón, rubidio y cesio, cerio y selenio, yodo e iridio, entre otros; sin embargo, la suma de los protones de cada par, es decir, la suma de sus números atómicos será de 92. Muchos de estos números son isótopos radiactivos, por eso sufren desintegraciones hasta que, según su vida media, se transforma en núcleos de algún elemento estable.
Actualmente, las fisiones presentes en los reactores nucleares se logran mediante el uso de neutrones lentos, porque son los mas apropiados para multiplicar las fisiones del uranio 235 o plutonio 239. No obstante, como los neutrones que se liberan de la fisión son rápidos, pues viajan a unos 4 mil km/s, se requiere frenarlos hasta una rapidez de 2 km/s para poder mantener una reacción en cadena, ya que de otra manera atravesarían las barras de uranio sin ser absorbidas.
Para ello se interponen en las barras de uranio sustancias llamadas moderadores, las mas usadas son el grafito y el agua pesada formada por el deuterio, (isótopo del hidrógeno), y el oxigeno. Así pues, los neutrones rápidos al chocar con los núcleos del moderador pierden parte de su energía cinética, y al ser desviado se produce una nueva colisión siendo frenado nuevamente hasta que después de varios impactos alcanza la velocidad deseada con la cual puede provocar la fisión en el núcleo pesado del átomo.
Una reacción en cadena se produce después de que un neutrón ha bombardeado un núcleo pesado provocando su ruptura en dos fragmentos y la emisión de tres neutrones como máximo, estos a su vez inciden en otros núcleos pesados fraccionándolos de tal manera que una vez iniciada la reacción se desarrollara en cadena hasta que el ultimo núcleo pesado haya sido dividido.
En un reactor nuclear es importante controlar las reacciones de fisión, por eso se debe mantener un numero constantes de desintegraciones. Para ello, se utilizan barras de control construidas de cadmio, boro o hafnio, que al ser absorbentes de neutrones reducen el número de desintegraciones.
Temas de Física
Espacio de interacción entre compañeros
domingo, 15 de mayo de 2011
lunes, 9 de mayo de 2011
CIRCUITOS RC Y RLC
INTRODUCCIÓN
El documento a continuación presentado, muestra la teoría general utilizada para el análisis de circuitos RC, RL y RLC. Se demostrarán sus ecuaciones normales y algunas de sus propiedades físicas.
CIRCUITOS RC
Los circuitos RC son circuitos que están compuestos por una resistencia y un condensador.
Se caracteriza por que la corriente puede variar con el tiempo. Cuando el tiempo es igual a cero, el condensador está descargado, en el momento que empieza a correr el tiempo, el condensador comienza a cargarse ya que hay una corriente en
el circuito. Debido al espacio entre las placas del condensador, en el circuito no circula corriente, es por eso que se utiliza una resistencia.
Cuando el condensador se carga completamente, la corriente en el circuito es igual a cero.
La segunda regla de Kirchoff dice: V = (IR) - (q/C)
Donde q/C es la diferencia de potencial en el condensador.
En un tiempo igual a cero, la corriente será: I = V/R cuando el condensador no se ha cargado.
Cuando el condensador se ha cargado completamente, la corriente es cero y la carga será igual a: Q = CV
CARGA DE UN CONDENSADOR
Ya se conoce que las variables dependiendo del tiempo serán I y q. Y la corriente I se sustituye por dq/dt (variación de la carga dependiendo de la variación del tiempo):
(dq/dt)R = V - (q/C)
dq/dt = V/R - (q/(RC))
Esta es una ecuaciónDiferencial. Se pueden dq/dt = (VC - q)/(RC)
Separar variable dq/(q - VC) = - dt/(RC)
Al integrar se tiene ln [ - (q - VC)/VC)] = -t/(RC)
Despejando q q dt = C V [(1 - e-t/RC )] = q (1- e-t/RC )
DESCARGA DE UN CONDENSADOR
Debido a que la diferencia de potencial en el condensador es IR = q/C, la razón de cambio de carga en el condensador determinará la corriente en el circuito, por lo tanto, la ecuación que resulte de la relación entre el cambio de la cantidad de carga dependiendo del cambio en el tiempo y la corriente en el circuito, estará dada remplazando I = dq/dt en la ecuación de diferencia de potencial en el condensador:
q = Q e-t/RC
Donde Q es la carga máxima
La corriente en función del tiempo entonces, resultará al derivar esta ecuación respecto al tiempo:
I = Q/(RC) e-t/RC
Se puede concluir entonces, que la corriente y la carga decaen de forma exponencial.CIRCUITOS RL
Los circuitos RL son aquellos que contienen una bobina (inductor) que tiene autoinductancia, esto quiere decir que evita cambios instantáneos en la corriente. Siempre se desprecia la autoinductancia en el resto del circuito puesto que se considera mucho menor a la del inductor.
Para un tiempo igual a cero, la corriente comenzará a crecer y el inductor producirá igualmente una fuerza electromotriz en sentido contrario, lo cual hará que la corriente no aumente. A esto se le conoce como fuerza contraelectromotriz.
Esta fem está dada por: V = -L (inductancia) dI/dt
Debido a que la corriente aumentará con el tiempo, el cambio será positivo (dI/dt) y la tensión será negativa al haber una caída de la misma en el inductor.
Según kirchhoff: V = (IR) + [L (dI / dt)]
IR = Caída de voltaje a través de la resistencia.
Esta es una ecuación diferencial y se puede hacer la sustitución:
x = (V/R) - I es decir; dx = -dI
Sustituyendo en la ecuación: x + [(L/R)(dx/dt)] = 0
dx/x = - (R/L) dt
Integrando: ln (x/xo) = -(R/L) tDespejando x: x = xo e -Rt / L
Debido a que xo = V/R
El tiempo es cero
Y corriente cero V/R - I = V/R e -Rt / L
I = (V/R) (1 - e -Rt / L)
El tiempo del circuito está representado por = L/RI = (V/R) (1 - e - 1/ )
Donde para un tiempo infinito, la corriente de la malla será I = V/R. Y se puede considerar entonces el cambio de la corriente en el tiempo como cero.Para verificar la ecuación que implica a y a I, se deriva una vez y se reemplaza en la inicial: dI/dt = V/L e - 1/
Se sustituye: V = (IR) + [L (dI / dt)]
V = [ (V/R) (1 - e - 1/ )R + (L V/ L e - 1/ )]
V - V e - 1/ = V - V e - 1/
OSCILACIONES EN UN CIRCUITO LC
Cuando un condensador se conecta a un inductor, tanto la corriente como la carga den el condensador oscila. Cuando existe una resistencia, hay una disipación de energía en el sistema porque una cuanta se convierte en calor en la resistencia, por lo tanto las oscilaciones son amortiguadas. Por el momento, se ignorará la resistencia.
En un tiempo igual a cero, la carga en el condensador es máxima y la energía almacenada en el campo eléctrico entre las placas es U = Q2máx/(2C). Después de un tiempo igual a cero, la corriente en el circuito comienza a aumentar y parte de la energía en el condensador se transfiere al inductor. Cuando la carga almacenada en el condensador es cero, la corriente es máxima y toda la energía está almacenada en el campo eléctrico del inductor. Este proceso se repite de forma inversa y así comienza a oscilar.
En un tiempo determinado, la energía total del sistema es igual a la suma de las dos energías (inductor y condensador): U = Uc + UL
U = [ Q2/(2C) ] + ( LI2/2 )
CIRCUITO RLC
Un circuito RLC es aquel que tiene como componentes una resistencia, un condensador y un inductor conectados en serie
En un tiempo igual a cero, el condensador tiene una carga máxima (Qmáx). Después de un tiempo igual a cero, la energía total del sistema está dada por la ecuación presentada en la sección de oscilaciones en circuitos LC
U = [ Q2/(2C) ] + ( LI2/2 )
En las oscilaciones en circuitos LC se había mencionado que las oscilaciones no eran amortiguadas puesto que la energía total se mantenía constante. En circuitos RLC, ya que hay una resistencia, hay oscilaciones amortiguadas porque hay una parte de la energía que se transforma en calor en la resistencia.
El cambio de la energía total del sistema dependiendo del tiempo está dado por la disipación de energía en una resistencia:
dU/dt = - I2R
Luego se deriva la ecuación de la energía total respecto al tiempo y se remplaza la dada: LQ´ + RQ´ + (Q/C) = 0
Se puede observar que el circuito RCL tiene un comportamiento oscilatorio amortiguado:
m(d2x/dt2) + b(dx/dt) + kx = 0
Si se tomara una resistencia pequeña, la ecuación cambiaría a : Q = Qmáx e -(Rt/2L)Cos wt
w = [ (1/LC) - (R/2L)2 ] 1/2
Entre más alto el valor de la resistencia, la oscilación tendrá amortiguamiento más veloz puesto que absorbería más energía del sistema. Si R es igual a (4L/C) ½ el sistema se encuentra sobreamortiguado.
carga
tiempo
CONCLUSIONES
Se visualizó la configuración general para los circuitos RC, RL y RLC.
Se presentó las propiedades físicas generales de los circuitos RC, RL y RLC.
Se establecieron las ecuaciones para carga y descarga de un condensador en los circuitos RC.
Se mostró la ecuación general para la corriente en un circuito RL, así como el tiempo dado por la relación entre resistencia e inductancia.
Se entendieron las propiedades de los circuitos RLC.
Se expuso las ecuaciones generales para el análisis de circuitos RLC.
sábado, 5 de marzo de 2011
Sonido.
El sonido, en física, es cualquier fenómeno que involucre la propagación en forma de ondas elásticas (sean audibles o no), generalmente a través de un fluido (u otro medio elástico) que esté generando el movimiento vibratorio de un cuerpo.
El sonido es un fenómeno vibratorio transmitido en forma de ondas. Para que se genere un sonido es necesario que vibre alguna fuente. Las vibraciones pueden ser transmitidas a través de diversos medios elásticos, entre los más comunes se encuentran el aire y el agua. La fonética acústica concentra su interés especialmente en los sonidos del habla: cómo se generan, cómo se perciben, y cómo se pueden describir gráfica y/o cuantitativamente.
Física del sonido
La física del sonido es estudiada por la acústica, que trata tanto de la propagación de las ondas sonoras en los diferentes tipos de medios continuos como la interacción de estas ondas sonoras con los cuerpos físicos.
Propagación del sonido
Ciertas características de los fluidos y de los sólidos influyen en la onda de sonido. Es por eso que el sonido se propaga en los sólidos y en los líquidos con mayor rapidez que en los gases. En general cuanto mayor sea la compresibilidad (1/K) del medio tanto menor es la velocidad del sonido. También la densidad es un factor importante en la velocidad de propagación, en general a mayor sea la densidad (ρ), a igualdad de todo lo demás, tanto menor es la velocidad de la propagación del sonido.
En los gases, la temperatura influye tanto la compresibilidad como la densidad, de tal manera que el factor de importancia suele ser la temperatura misma.
Para que el sonido se transmita se necesita que las moléculas vibren en torno a sus posiciones de equilibrio.
En algunas zonas de las moléculas de aire, al vibrar se juntan (zonas de compresión) y en otras zonas se alejan (zonas de rarefacción), esta alteración de las moléculas de aire es lo que produce el sonido.
Las ondas sonoras necesitan un medio en el que propagarse, por lo que son ondas mecánicas. Se propagan en la misma dirección en la que tienen lugar las compresiones y dilataciones del medio: son ondas longitudinales.
La velocidad de propagación de las ondas sonoras depende de la distancia entre las partículas del medio; por tanto, es en general mayor en los sólidos que en los líquidos y en estos, a su vez, que en los gases.
Magnitudes físicas del sonido
Como todo movimiento ondulatorio, el sonido puede representarse como una suma de curvas sinusoides con un factor de amplitud, que se pueden caracterizar por las mismas magnitudes y unidades de medida que a cualquier onda de frecuencia bien definida: Longitud de onda (λ), frecuencia (f) o inversa del período (T), amplitud (que indica la cantidad de energía que contiene una señal sonora) y no hay que confundir amplitud con volumen o potencia acústica. Y finalmente cuando se considera la superposición de diferentes ondas es importante la fase que representa el retardo relativo en la posición de una onda con respecto a otra.
Velocidad del sonido
El sonido tiene una velocidad de 331,5 m/s cuando: la temperatura es de 0 °C, la presión atmosférica es de 1 atm (nivel del mar) y se presenta una humedad relativa del aire de 0 % (aire seco). Aunque depende muy poco de la presión del aire.
La velocidad del sonido depende del tipo de material. Cuando el sonido se desplaza en los sólidos tiene mayor velocidad que en los líquidos, y en los líquidos es más veloz que en los gases. Esto se debe a que las partículas en los sólidos están más cercanas.
Reverberación
La reverberación es la suma total de las reflexiones del sonido que llegan al lugar del oyente en diferentes momentos del tiempo. Auditivamente se caracteriza por una prolongación, a modo de "cola sonora", que se añade al sonido original. La duración y la coloración tímbrica de esta cola dependen de: La distancia entre el oyente y la fuente sonora; la naturaleza de las superficies que reflejan el sonido. En situaciones naturales hablamos de sonido directo para referirnos al sonido que se transmite directamente desde la fuente sonora hasta nosotros (o hasta el mecanismo de captación que tengamos). Por otra parte, el sonido reflejado es el que percibimos después de que haya rebotado en las superficies que delimitan el recinto acústico, o en los objetos que se encuentren en su trayectoria.
Evidentemente, la trayectoria del sonido reflejado siempre será más larga que la del sonido directo, de manera que -temporalmente- escuchamos primero el sonido directo, y unos instantes más tarde escucharemos las primeras reflexiones; a medida que transcurre el tiempo las reflexiones que nos llegan son cada vez de menor intensidad, hasta que desparecen. Nuestra sensación, no obstante, no es la de escuchar sonidos separados, ya que el cerebro los integra en un único precepto, siempre que las reflexiones lleguen con una separación menor de unos 50 milisegundos. Esto es lo que se denomina efecto Has o efecto de precedencia.
Fisiología del sonido
El aparato auditivo
Los sonidos son percibidos a través del aparato auditivo que recibe las ondas sonoras, que son convertidas en movimientos de los osteocillos óticos y percibidas en el oído interno que a su vez las transmite mediante el sistema nervioso al cerebro. Esta habilidad se tiene incluso antes de nacer.
La voz humana se produce por la vibración de las cuerdas vocales, lo cual genera una onda sonora que es combinación de varias frecuencias y sus correspondientes armónicos. La cavidad buco-nasal sirve para crear ondas cuasiestacionarias por lo que ciertas frecuencias denominadas formantes. Cada segmento de sonido del habla viene caracterizado por un cierto espectro de frecuencias o distribución de la energía sonora en las diferentes frecuencias. El oído humano es capaz de identificar diferentes formantes de dicho sonido y percibir cada sonido con formantes diferentes como cualitativamente diferentes, eso es lo que permite por ejemplo distinguir dos vocales. Típicamente el primer formante, el de frecuencia más baja está relacionada con la abertura de la vocal que en última instancia está relacionada con la frecuencia de las ondas estacionarias que vibran verticalmente en la cavidad. El segundo formante está relacionado con la vibración en la dirección horizontal y está relacionado con si la vocal es anterior, central o posterior.
Sonidos del habla
Las lenguas humanas usan segmentos homogéneos reconocibles de unas decenas de milisegundos de duración, que componen los sonidos del habla, técnicamente llamados fonos. Lingüísticamente no todas las diferencias acústicas son relevantes, por ejemplo las mujeres y los niños tienen en general tonos más agudos, por lo que todos los sonidos que producen tienen en promedio una frecuencia fundamental y unos armónicos más altos.
Resonancia
Es el fenómeno que se produce cuando los cuerpos vibran con la misma frecuencia, uno de los cuales se puso a vibrar al recibir las frecuencias del otro. Para entender el fenómeno de la resonancia existe un ejemplo muy sencillo, Supóngase que se tiene un tubo con agua y muy cerca de él (sin éstos en contacto) tenemos un diapasón, si golpeamos el diapasón con un metal, mientras echan agua en el tubo, cuando el agua alcance determinada altura el sonido será más fuerte; esto se debe a que la columna de agua contenida en el tubo se pone a vibrar con la misma frecuencia que la que tiene el diapasón, lo que evidencia por qué las frecuencias se refuerzan y en consecuencia aumenta la intensidad del sonido. . Un ejemplo es el efecto de afinar las cuerdas de la guitarra, puesto que al afinar, lo que se hace es igualar las frecuencias, es decir poner en resonancia el sonido de las cuerdas.
Los hablantes competentes de una lengua aprenden a "clasificar" diferentes sonidos cualitativamente similares en clases de equivalencia de rasgos relevantes. Esas clases de equivalencia reconocidas por los hablantes son los constructos mentales que llamamos fonemas. La mayoría de lenguas naturales tiene unas pocas decenas de fonemas distintivos, a pesar de que las variaciones acústicas de los fonos y sonidos son enormes.
El sonido en la música
El sonido, en combinación con el silencio, es la materia prima de la música. En música los sonidos se califican en categorías como: largos y cortos, fuertes y débiles, agudos y graves, agradables y desagradables. El sonido ha estado siempre presente en la vida cotidiana del hombre. A lo largo de la historia el ser humano ha inventado una serie de reglas para ordenarlo hasta construir algún tipo de lenguaje musical.
La altura
Indica si el sonido es grave, agudo o medio, y viene determinada por la frecuencia fundamental de las ondas sonoras, medida en ciclos por segundo o hercios (Hz).
vibración lenta = baja frecuencia = sonido grave.
vibración rápida = alta frecuencia = sonido agudo.
Para que los humanos podamos percibir un sonido, éste debe estar comprendido entre el rango de audición de 16 y 20.000 Hz. Por debajo de este rango tenemos los infrasonidos y por encima los ultrasonidos. A esto se le denomina rango de frecuencia audible. Cuanta más edad se tiene, este rango va reduciéndose tanto en graves como en agudos.
La intensidad
Es la cantidad de energía acústica que contiene un sonido, es decir, lo fuerte o suave de un sonido. La intensidad viene determinada por la potencia, que a su vez está determinada por la amplitud y nos permite distinguir si el sonido es fuerte o débil.
Los sonidos que percibimos deben superar el umbral auditivo (0 dB) y no llegar al umbral de dolor (140 dB). Esta cualidad la medimos con el sonómetro y los resultados se expresan en decibelios (dB) en honor al científico e inventor Alexander Graham Bell.
El timbre
Es la cualidad que confiere al sonido los armónicos que acompañan a la frecuencia fundamental. La voz propia de cada instrumento que distingue entre los sonidos y los ruidos.
Esta cualidad es la que permite distinguir dos sonidos, por ejemplo, entre la misma nota (tono) con igual intensidad producida por dos instrumentos musicales distintos. Se define como la calidad del sonido. cada cuerpo sonoro vibra de una forma distinta. Las diferencias se dan no solamente por la naturaleza del cuerpo sonoro (madera, metal, piel tensada, etc.), sino también por la manera de hacerlo sonar (golpear, frotar, rascar).
Una misma nota suena distinta si la toca una flauta, un violín, una trompeta, etc. Cada instrumento tiene un timbre que lo identifica o lo diferencia de los demás. Con la voz sucede lo mismo. El sonido dado por un hombre, una mujer, un/a niño/a tienen distinto timbre. El timbre nos permitirá distinguir si la voz es áspera, dulce, ronca o aterciopelada. También influye en la variación del timbre la calidad del material que se utilice. Así pues, el sonido será claro, sordo, agradable o molesto.
La duración
Es el tiempo durante el cual se mantiene un sonido. Podemos escuchar sonidos largos, cortos, muy cortos, etc.
Los únicos instrumentos acústicos que pueden mantener los sonidos el tiempo que quieran, son los de cuerda con arco, como el violín, y los de viento (utilizando la respiración circular o continua); pero por lo general, los instrumentos de viento dependen de la capacidad pulmonar, y los de cuerda según el cambio del arco producido por el ejecutante.
Fuentes del sonido
El sonido es un tipo de ondas mecánicas longitudinales producidas por variaciones de presión del medio. Estas variaciones de presión (captadas por el oído humano) producen en el cerebro la percepción del sonido.
Existen en la naturaleza sonidos generados por diferentes fuentes de sonido y sus características de frecuencia (altura), intensidad (fuerza), forma de la onda (timbre) y envolvente (modulación) los hacen diferentes e inconfundibles, por ejemplo, el suave correr del agua por un grifo tiene las mismas características en frecuencia, timbre y envolvente que el ensordecedor correr del agua en las cataratas del Iguazú, con sus aproximadamente 100 metros de altura de caída libre, pero la intensidad (siempre medida en decibelios a un metro de distancia de la zona de choque) es mucho mayor.
De los requisitos apuntados, el de la envolvente es el más significativo, puesto que es "la variación de la intensidad durante un tiempo, generalmente el inicial, considerado", el ejemplo de la diferencia de envolventes es la clara percepción que tenemos cuando algún instrumento de cuerda raspada (violín, violoncelo) son ejecutados "normalmente" (con el arco raspando las cuerdas" o cuando son pulsados (pizzicato); mientras que en el primer caso el sonido tiene aproximadamente la misma intensidad durante toda su ejecución, en el segundo caso el sonido parte con una intensidad máxima (la cuerda tensa soltada por el músico) atenuándose rápidamente con el transcurso del tiempo y de una manera exponencial, de manera que la oscilación siguiente a la anterior sigue una ley de variación descendente.
Entre los instrumentos que exhiben una envolvente constante tenemos primordialmente el órgano de tubos (y sus copias electrónicas), el saxofón (también de aire, como el órgano) y aquellos instrumentos que, no siendo de envolvente fija, pueden fácilmente controlar esta función, como la flauta (dulce y armónica), la tuba, el clarinete y las trompetas, pífano y silbatos, bocinas de medios de transportes (instrumentos de advertencia); entre los instrumentos de declinación exponencial tenemos todos los de percusión que forman las "baterías": bombos, platillos, redoblantes, tumbadoras (en este ramo debemos destacar los platillos, con un tiempo largo de declinación que puede ser cortado violentamente por el músico) mediante un pedal.
Suscribirse a:
Entradas (Atom)